바로가기메뉴

본문 바로가기 주메뉴 바로가기

logo

  • P-ISSN2233-4203
  • E-ISSN2093-8950

Recent Progress on Microfluidic Electrophoresis Device Application in Mass Spectrometry

Mass Spectrometry Letters, (P)2233-4203; (E)2093-8950
2018, v.9 no.1, pp.1-16
https://doi.org/10.5478/MSL.2018.9.1.1
Roy Swapan Kumar (Chungbuk National University)
Seongnyeon Kim (Korea Basic Science Institute)
Jung H. Yoon (The University of Florida)
Yong-Kyu Yoon (The University of Florida)
Kun Cho (Korea Basic Science Institute)
  • Downloaded
  • Viewed

Abstract

Microfluidic technologies hold high promise and emerge as a potential molecular tool to facilitate the progress of fundamental and applied biomedical researches by enabling miniaturization and upgrading current biological research tools. In this review, we summarize the state of the art of existing microfluidic technologies and its’ application for characterizing bio- physical properties of individual cells. Microfluidic devices offer significant advantages and ability to handle in integrating sam- ple processes, minimizing sample and reagent volumes, and increased analysis speed. Therefore, we first present the basic concepts and summarize several achievements in new coupling between microfluidic devices and mass spectrometers. Secondly, we discuss the recent applications of microfluidic chips in various biological research field including cellular and molecular level. Finally, we present the current challenge of microfluidic technologies and future perspective in this study field.

Submission Date
2018-02-14
Revised Date
2018-03-09
Accepted Date
2018-03-12

Reference

1

Kakac S.. (2010). Microfluidics Based Microsystems:Springer.

2

Andersson, H.. (2003). . Sens. Actuator B Chem., 92, 315-. http://dx.doi.org/10.1016/S0925-4005(03)00266-1.

3

Salieb-Beugelaar, G. B.. (2010). . Anal. Chem., 82, 4848-. http://dx.doi.org/10.1021/ac1009707.

4

Zhuang, Q. -C.. (2016). . Chinese J. Anal. Chem., 44, 522-. http://dx.doi.org/10.1016/S1872-2040(16)60919-2.

5

Auroux, P. -A.. (2002). . Anal. Chem., 74, 2637-. http://dx.doi.org/10.1021/ac020239t.

6

Bange, A.. (2005). . Biosens. Bioelectron., 20, 2488-. http://dx.doi.org/10.1016/j.bios.2004.10.016.

7

Lei, K. F.. (2012). . J. Lab. Autom., 17, 330-. http://dx.doi.org/10.1177/2211068212454853.

8

Reyes, D. R.. (2002). . Anal. Chem., 74, 2623-. http://dx.doi.org/10.1021/ac0202435.

9

Vilkner, T.. (2004). . Anal. Chem., 76, 3373-. http://dx.doi.org/10.1021/ac040063q.

10

Zhang, Y.. (2009). . Anal. Chim. Acta, 638, 115-. http://dx.doi.org/10.1016/j.aca.2009.02.038.

11

Sackmann, E. K.. (2014). . Nature, 507, 181-. http://dx.doi.org/10.1038/nature13118.

12

Whitesides, G. M.. (2006). . Nature, 442, 368-. http://dx.doi.org/10.1038/nature05058.

13

Haeberle, S.. (2007). . Lab Chip, 7, 1094-. http://dx.doi.org/10.1039/b706364b.

14

Quake, S. R.. (2000). . Science, 290, 1536-. http://dx.doi.org/10.1126/science.290.5496.1536.

15

Livak-Dahl, E.. (2011). . Annu Rev. Chem. Biomol. Eng., 2, 325-. http://dx.doi.org/10.1146/annurev-chembioeng-061010-114215.

16

Nge, P. N.. (2013). . Chem. Rev., 113, 2550-. http://dx.doi.org/10.1021/cr300337x.

17

Xiong, B.. (2014). . Adv. Mater., 26, 5525-. http://dx.doi.org/10.1002/adma.201305348.

18

Lee, J.. (2009). . J. Mass Spectrom., 44, 579-. http://dx.doi.org/10.1002/jms.1585.

19

Liu, J.. (2007). . Int. J. Mass Spectrom., 259, 65-. http://dx.doi.org/10.1016/j.ijms.2006.08.017.

20

Janasek, D.. (2006). . Nature, 442, 374-. http://dx.doi.org/10.1038/nature05059.

21

Rios, A.. (2006). . TrAC-Trends Anal. Chem., 25, 467-. http://dx.doi.org/10.1016/j.trac.2005.11.012.

22

Gao, D.. (2013). . Lab Chip, 13, 3309-. http://dx.doi.org/10.1039/c3lc50449b.

23

Loo, J. A.. (2005). . J. Am. Soc. Mass Spectrom., 16, 998-. http://dx.doi.org/10.1016/j.jasms.2005.02.017.

24

Li, D. (2008). Encyclopedia of Microfluidics and Nanofluidics:Springer.

25

Prudent, M.. (2009). . Analyst, 134, 2189-. http://dx.doi.org/10.1039/b910917j.

26

Wang, X.. (2015). . J. Chromatogr. A, 1382, 98-. http://dx.doi.org/10.1016/j.chroma.2014.10.039.

27

Bindila, L.. (2009). . Mass Spectrom. Rev., 28, 223-. http://dx.doi.org/10.1002/mas.20197.

28

Lin, S. L.. (2012). . Electrophoresis, 33, 635-. http://dx.doi.org/10.1002/elps.201100380.

29

Dittrich, P. S.. (2006). . Anal. Chem., 78, 3887-. http://dx.doi.org/10.1021/ac0605602.

30

Ohno, K. I.. (2008). . Electrophoresis, 29, 4443-. http://dx.doi.org/10.1002/elps.200800121.

31

Kovarik, M. L.. (2011). . Anal. Chem., 84, 516-.

32

Meyvantsson, I.. (2008). . Annu. Rev. Anal. Chem., 1, 423-. http://dx.doi.org/10.1146/annurev.anchem.1.031207.113042.

33

Yeo, L. Y.. (2011). . Small, 7, 12-. http://dx.doi.org/10.1002/smll.201000946.

34

Zare, R. N.. (2010). . Annu. Rev. Biomed. Eng., 12, 187-. http://dx.doi.org/10.1146/annurev-bioeng-070909-105238.

35

Vanapalli, S. A.. (2009). . Biomicrofluidics, 3, 012006-. http://dx.doi.org/10.1063/1.3067820.

36

Zheng, Y.. (2011). . Micro Nano Lett., 6, 327-. http://dx.doi.org/10.1049/mnl.2011.0010.

37

Lee, J. H.. (2008). . Lab Chip, 8, 596-. http://dx.doi.org/10.1039/b717900f.

38

Liu, J.. (2009). . Anal. Chem., 81, 2545-. http://dx.doi.org/10.1021/ac802359e.

39

Tanaka, T.. (2009). . Anal. Chim. Acta, 638, 186-. http://dx.doi.org/10.1016/j.aca.2009.02.016.

40

Chang, C. -C.. (2007). . Microfluid. Nanofluid., 3, 501-. http://dx.doi.org/10.1007/s10404-007-0178-z.

41

Miled, A.. (2017). . Sensors, 17, 1707-. http://dx.doi.org/10.3390/s17081707.

42

Posthuma-Trumpie, G. A.. (2009). . Anal. Bioanal. Chem., 393, 569-. http://dx.doi.org/10.1007/s00216-008-2287-2.

43

Wu, X.. (2008). . Lab Chip, 8, 1943-. http://dx.doi.org/10.1039/b804319a.

44

Huh, D.. (2005). . Physiol. Meas., 26, R73-. http://dx.doi.org/10.1088/0967-3334/26/3/R02.

45

Boedicker, J. Q.. (2008). . Lab Chip, 8, 1265-. http://dx.doi.org/10.1039/b804911d.

46

Huebner, A.. (2008). . Lab Chip, 8, 1244-. http://dx.doi.org/10.1039/b806405a.

47

Choi, K.. (2012). . Annu. Rev. Anal. Chem., 5, 413-. http://dx.doi.org/10.1146/annurev-anchem-062011-143028.

48

Fair, R. B.. (2007). . Microfluid. Nanofluid., 3, 245-. http://dx.doi.org/10.1007/s10404-007-0161-8.

49

Chen, J.. (2005). . Anal. Chem., 77, 658-. http://dx.doi.org/10.1021/ac048758e.

50

Guo, Z. -G.. (2006). . Appl. Phys. Lett., 89, 081911-. http://dx.doi.org/10.1063/1.2336729.

51

Khaw, M. K.. (2016). . Lab Chip, 16, 2211-. http://dx.doi.org/10.1039/C6LC00378H.

52

Pollack, M. G.. (2000). . Appl. Phys. Lett., 77, 1725-. http://dx.doi.org/10.1063/1.1308534.

53

Cho, S. K.. (2003). . J. Microelectromech. Syst., 12, 70-. http://dx.doi.org/10.1109/JMEMS.2002.807467.

54

Nelson, W. C.. (2012). . J. Adhes. Sci. Technol., 26, 1747-.

55

Huang, C. -Y.. (2016). . Biomicrofluidics, 10, 011901-. http://dx.doi.org/10.1063/1.4939942.

56

Shah, G. J.. (2009). . Lab Chip, 9, 1732-. http://dx.doi.org/10.1039/b821508a.

57

Shamsi, M. H.. (2014). . Lab Chip, 14, 547-. http://dx.doi.org/10.1039/C3LC51063H.

58

Zhang, Y.. (2017). . Lab Chip, 17, 994-. http://dx.doi.org/10.1039/C7LC00025A.

59

Gabriele, S.. (2010). . Lab Chip, 10, 1459-. http://dx.doi.org/10.1039/c002257h.

60

Ji, J.. (2012). . Lab Chip, 12, 1373-. http://dx.doi.org/10.1039/c2lc40052a.

61

Wang, M. M.. (2005). . Nat. Biotechnol., 23, 83-. http://dx.doi.org/10.1038/nbt1050.

62

Bedair, M. F.. (2006). . Anal. Chem., 78, 1130-. http://dx.doi.org/10.1021/ac0514570.

63

Dahlin, A. P.. (2005). . Anal. Chem., 77, 5356-. http://dx.doi.org/10.1021/ac050495g.

64

Schilling, M.. (2004). . Lab Chip, 4, 220-. http://dx.doi.org/10.1039/B315957B.

65

Yin, H.. (2005). . Anal. Chem., 77, 527-. http://dx.doi.org/10.1021/ac049068d.

66

Lion, N.. (2003). . J. Chromatogr. A, 1003, 11-. http://dx.doi.org/10.1016/S0021-9673(03)00771-4.

67

Wang, Y. -X.. (2004). . LabChip, 4, 363-.

68

Shui, W.. (2003). . Rapid Commun. Mass Spectrom., 17, 1541-. http://dx.doi.org/10.1002/rcm.1083.

69

Ssenyange, S.. (2004). . Anal. Chem., 76, 2393-. http://dx.doi.org/10.1021/ac035168s.

70

Schultz, G. A.. (2000). . Anal. Chem., 72, 4058-. http://dx.doi.org/10.1021/ac000325y.

71

Licklider, L.. (2000). . Anal. Chem., 72, 367-. http://dx.doi.org/10.1021/ac990967p.

72

Liljegren, G.. (2005). . Lab Chip, 5, 1008-. http://dx.doi.org/10.1039/b506289f.

73

Svedberg, M.. (2004). . Lab Chip, 4, 322-. http://dx.doi.org/10.1039/b402490g.

74

Liuni, P.. (2010). . Rapid Commun. Mass Spectrom., 24, 315-. http://dx.doi.org/10.1002/rcm.4391.

75

Song, H.. (2006). . Angew. Chem. Int. Edit., 45, 7336-. http://dx.doi.org/10.1002/anie.200601554.

76

Teh, S. -Y.. (2008). . Lab Chip, 8, 198-. http://dx.doi.org/10.1039/b715524g.

77

Zhu, Y.. (2013). . Anal. Chim. Acta, 787, 24-. http://dx.doi.org/10.1016/j.aca.2013.04.064.

78

Belder, D.. (2005). . Angew. Chem. Int. Edit., 44, 3521-. http://dx.doi.org/10.1002/anie.200500620.

79

Jensen, K.. (2004). . Lab Chip, 4, 31-. http://dx.doi.org/10.1039/b409797c.

80

Nisisako, T.. (2005). . Soft Matter, 1, 23-. http://dx.doi.org/10.1039/b501972a.

81

Nisisako, T.. (2007). . Adv. Mater., 19, 1489-. http://dx.doi.org/10.1002/adma.200700272.

82

Utada, A.. (2005). . Science, 308, 537-. http://dx.doi.org/10.1126/science.1109164.

83

Wheeler, A. R.. (2008). . Science, 322, 539-. http://dx.doi.org/10.1126/science.1165719.

84

Jebrail, M. J.. (2011). . Lab Chip, 11, 3218-. http://dx.doi.org/10.1039/c1lc20524b.

85

Karas, M.. (1988). . Anal. Chem., 60, 2299-. http://dx.doi.org/10.1021/ac00171a028.

86

Ericson, C.. (2003). . Anal. Chem., 75, 2309-. http://dx.doi.org/10.1021/ac026409j.

87

Sun, X.. (2011). . Anal. Chem., 83, 5797-. http://dx.doi.org/10.1021/ac200960h.

88

Garden, R. W.. (2000). . Anal. Chem., 72, 30-. http://dx.doi.org/10.1021/ac9908997.

89

Musyimi, H. K.. (2005). . Electrophoresis, 26, 4703-. http://dx.doi.org/10.1002/elps.200500317.

90

Lee, J.. (2008). . J. Am. Soc. Mass Spectrom., 19, 964-. http://dx.doi.org/10.1016/j.jasms.2008.03.015.

91

Fan, S. -K.. (2008). . Lab Chip, 8, 1325-. http://dx.doi.org/10.1039/b803204a.

92

Yang, H.. (2008). . Anal. Chem., 81, 1061-.

93

Lee, H.. (2017). . Microfluid. Nanofluid., 21, 141-. http://dx.doi.org/10.1007/s10404-017-1976-6.

94

Brivio, M.. (2002). . Anal. Chem., 74, 3972-. http://dx.doi.org/10.1021/ac020185n.

95

Brivio, M.. (2005). . Lab Chip, 5, 378-. http://dx.doi.org/10.1039/b418986h.

96

Barbulovic-Nad, I.. (2008). . Lab Chip, 8, 519-. http://dx.doi.org/10.1039/b717759c.

97

Valones, M. A. A.. (2009). . Braz. J. Microbiol., 40, 1-. http://dx.doi.org/10.1590/S1517-83822009000100001.

98

Fernandes, T. G.. (2009). . Trends Biotechnol., 27, 342-. http://dx.doi.org/10.1016/j.tibtech.2009.02.009.

99

Gupta, K.. (2010). . Lab Chip, 10, 2019-. http://dx.doi.org/10.1039/c004689b.

100

Klein, A. M.. (2015). . Cell, 161, 1187-. http://dx.doi.org/10.1016/j.cell.2015.04.044.

101

Jung, H.. (2015). . Analyst, 140, 1265-. http://dx.doi.org/10.1039/C4AN01430H.

102

Kang, W.. (2014). . Lab Chip, 14, 4486-. http://dx.doi.org/10.1039/C4LC00721B.

103

Gross, P. G.. (2007). . J. Neurol. Sci., 252, 135-. http://dx.doi.org/10.1016/j.jns.2006.11.009.

104

Farinas, J.. (2001). . Anal. Biochem., 295, 138-. http://dx.doi.org/10.1006/abio.2001.5202.

105

Grant, S. C.. (2000). . Magn. Reson. Med., 44, 19-. http://dx.doi.org/10.1002/1522-2594(200007)44:1<19::AID-MRM4>3.0.CO;2-F.

106

Massin, C.. (2003). . J. Magn. Reson., 164, 242-. http://dx.doi.org/10.1016/S1090-7807(03)00151-4.

107

Huang, Y.. (2012). . Lab Chip, 12, 2103-. http://dx.doi.org/10.1039/c2lc21142d.

108

Mauleon, G.. (2012). . PloS One, 7, e43309-. http://dx.doi.org/10.1371/journal.pone.0043309.

109

Lucas, L. J.. (2006). . Colloids Surf. B Biointerfaces, 49, 106-. http://dx.doi.org/10.1016/j.colsurfb.2006.03.008.

110

Prest, J. E.. (2008). . Meas. Sci. Technol., 19, 065801-. http://dx.doi.org/10.1088/0957-0233/19/6/065801.

111

Caviglia, C.. (2015). . Anal. Chem., 87, 2204-. http://dx.doi.org/10.1021/ac503621d.

112

Sung, J. H.. (2010). . Lab Chip, 10, 446-. http://dx.doi.org/10.1039/b917763a.

113

Psaltis, D.. (2006). . Nature, 442, 381-. http://dx.doi.org/10.1038/nature05060.

114

Chen, P.. (2008). . Front. Biosci., 13, 2464-. http://dx.doi.org/10.2741/2859.

115

Dittrich, P. S.. (2003). . Anal. Chem., 75, 5767-. http://dx.doi.org/10.1021/ac034568c.

116

Fu, L. -M.. (2004). . Anal. Chim. Acta, 507, 163-. http://dx.doi.org/10.1016/j.aca.2003.10.028.

117

Kang, Y.. (2008). . Anal. Chim. Acta, 626, 97-. http://dx.doi.org/10.1016/j.aca.2008.07.043.

118

Yao, B.. (2004). . Lab Chip, 4, 603-. http://dx.doi.org/10.1039/b408422e.

119

Inglis, D. W.. (2004). . Appl. Phys. Lett., 85, 5093-. http://dx.doi.org/10.1063/1.1823015.

120

Fu, A. Y.. (2002). . Anal. Chem., 74, 2451-. http://dx.doi.org/10.1021/ac0255330.

121

Wolff, A.. (2003). . Lab Chip, 3, 22-. http://dx.doi.org/10.1039/b209333b.

122

Chabert, M.. (2008). . Proc. Natl. Acad. Sci. U.S.A., 105, 3191-. http://dx.doi.org/10.1073/pnas.0708321105.

123

Kovac, J.. (2007). . Anal. Chem., 79, 9321-. http://dx.doi.org/10.1021/ac071366y.

124

Lau, A. Y.. (2008). . Lab Chip, 8, 1116-. http://dx.doi.org/10.1039/b803598a.

125

Perroud, T. D.. (2008). . Anal. Chem., 80, 6365-. http://dx.doi.org/10.1021/ac8007779.

126

Williams, D. F.. (2006). The Biomaterials: Silver Jubilee Compendium:Elsevier Science.

127

Kaji, H.. (2003). . Lab Chip, 3, 208-. http://dx.doi.org/10.1039/b304350a.

128

Di Carlo, D.. (2006). . Lab Chip, 6, 1445-. http://dx.doi.org/10.1039/b605937f.

129

Manbachi, A.. (2008). . Lab Chip, 8, 747-. http://dx.doi.org/10.1039/b718212k.

130

Evander, M.. (2007). . Anal. Chem., 79, 2984-. http://dx.doi.org/10.1021/ac061576v.

131

Shao, B.. (2007). . Biomed. Microdevices, 9, 361-. http://dx.doi.org/10.1007/s10544-006-9041-3.

132

Klauke, N.. (2007). . Lab Chip, 7, 731-. http://dx.doi.org/10.1039/b706175g.

133

Wei, C. -W.. (2006). . Biomed. Microdevices, 8, 65-. http://dx.doi.org/10.1007/s10544-006-6384-8.

134

Song, X.. (2008). . Biotechnol. Lett., 30, 1537-. http://dx.doi.org/10.1007/s10529-008-9725-2.

135

Gomez-Sjoberg, R.. (2005). . J. Microelectromech. Syst., 14, 829-. http://dx.doi.org/10.1109/JMEMS.2005.845444.

136

Fesenko, D.. (2005). . Biosens. Bioelectron., 20, 1860-. http://dx.doi.org/10.1016/j.bios.2004.06.005.

137

Floriano, P. N.. (2007). Microchip-Based Assay Systems:Humana Press.

138

Davidsson, R.. (2004). . J. Lab Chip, 4, 488-. http://dx.doi.org/10.1039/B400900B.

139

Satoh, W.. (2009). . Lab Chip, 9, 35-. http://dx.doi.org/10.1039/B810961C.

140

Clark, A. M.. (2009). . Anal. Chem., 81, 2350-. http://dx.doi.org/10.1021/ac8026965.

141

Cheng, W.. (2006). . Lab Chip, 6, 1424-. http://dx.doi.org/10.1039/b608202e.

142

Zguris, J. C.. (2005). . Biomed. Microdevices, 7, 117-. http://dx.doi.org/10.1007/s10544-005-1589-9.

143

Baudoin, R.. (2007). . Toxicol. In Vitro, 21, 535-. http://dx.doi.org/10.1016/j.tiv.2006.11.004.

144

Yoo, S. K.. (2007). . Biosens. Bioelectron., 22, 1586-. http://dx.doi.org/10.1016/j.bios.2006.07.014.

145

Oblak, T. D. A.. (2009). . Analyst, 134, 188-. http://dx.doi.org/10.1039/B816740K.

146

Carraro, A.. (2008). . Biomed. Microdevices, 10, 795-. http://dx.doi.org/10.1007/s10544-008-9194-3.

147

Wu, J.. (2014). . Microchim. Acta, 181, 1611-. http://dx.doi.org/10.1007/s00604-013-1140-2.

148

Yager, P.. (2006). . Nature, 442, 412-. http://dx.doi.org/10.1038/nature05064.

149

Foudeh, A. M.. (2012). . Lab Chip, 12, 3249-. http://dx.doi.org/10.1039/c2lc40630f.

150

Ghrera, A. S.. (2015). . Appl. Phys. Lett., 106, 193703-. http://dx.doi.org/10.1063/1.4921203.

151

Dimov, I. K.. (2008). . Lab Chip, 8, 2071-. http://dx.doi.org/10.1039/b812515e.

152

Kambara, H.. (1993). . Nature, 361, 565-. http://dx.doi.org/10.1038/361565a0.

153

Woolley, A. T.. (1995). . Anal. Chem., 67, 3676-. http://dx.doi.org/10.1021/ac00116a010.

154

Liu, S.. (2000). . Proc. Natl. Acad. Sci. U.S.A., 97, 5369-. http://dx.doi.org/10.1073/pnas.100113197.

155

Shi, Y.. (2003). . Electrophoresis, 24, 3371-. http://dx.doi.org/10.1002/elps.200305553.

156

Kartalov, E. P.. (2004). . Nucleic Acids Res., 32, 2873-. http://dx.doi.org/10.1093/nar/gkh613.

157
158

Kan, C. W.. (2004). . Electrophoresis, 25, 3564-. http://dx.doi.org/10.1002/elps.200406161.

159

Sinville, R.. (2007). . J. Sep. Sci., 30, 1714-. http://dx.doi.org/10.1002/jssc.200700150.

160

Lagally, E.. (2001). . Anal. Chem., 73, 565-. http://dx.doi.org/10.1021/ac001026b.

161

Song, S.. (2004). . Anal. Chem., 76, 4589-. http://dx.doi.org/10.1021/ac0497151.

162

Kelly, R. T.. (2006). . Anal. Chem., 78, 2565-. http://dx.doi.org/10.1021/ac0521394.

163

Wang, Y. -C.. (2005). . Anal. Chem., 77, 4293-. http://dx.doi.org/10.1021/ac050321z.

164

Kim, S. M.. (2006). . Anal. Chem., 78, 4779-. http://dx.doi.org/10.1021/ac060031y.

165

DeVoe, D. L.. (2006). . Electrophoresis, 27, 3559-. http://dx.doi.org/10.1002/elps.200600224.

166

Li, J.. (2002). . Mol. Cell. Proteomics, 1, 157-. http://dx.doi.org/10.1074/mcp.M100022-MCP200.

167

Ji, J.. (2012). . Lab Chip, 12, 2625-. http://dx.doi.org/10.1039/c2lc40206h.

168

Jensen, O. N.. (2006). . Nat. Rev. Mol. Cell Biol., 7, 391-. http://dx.doi.org/10.1038/nrm1939.

169

Manning, G.. (2002). . Science, 298, 1912-. http://dx.doi.org/10.1126/science.1075762.

170

Ficarro, S. B.. (2002). . Nat. Biotechnol., 20, 301-. http://dx.doi.org/10.1038/nbt0302-301.

171

Larsen, M. R.. (2005). . Mol. Cell. Proteomics, 4, 873-. http://dx.doi.org/10.1074/mcp.T500007-MCP200.

172

McNulty, D. E.. (2008). . Mol. Cell. Proteomics, 7, 971-. http://dx.doi.org/10.1074/mcp.M700543-MCP200.

173

Stensballe, A.. (2001). . Proteomics, 1, 207-. http://dx.doi.org/10.1002/1615-9861(200102)1:2<207::AID-PROT207>3.0.CO;2-3.

174

Thingholm, T. E.. (2006). . Nat. Protoc., 1, 1929-. http://dx.doi.org/10.1038/nprot.2006.185.

175

Raijmakers, R.. (2010). . Anal. Chem., 82, 824-. http://dx.doi.org/10.1021/ac901764g.

176

Jonsson, M.. (2006). . J. Micromech. Microeng., 16, 2116-. http://dx.doi.org/10.1088/0960-1317/16/10/027.

177

Shariatgorji, M.. (2008). . Anal. Chem., 80, 7116-. http://dx.doi.org/10.1021/ac800877k.

178

Mok, J.. (2014). . Proc. Natl. Acad. Sci. U.S.A., 111, 2110-. http://dx.doi.org/10.1073/pnas.1323998111.

179

Ostrowski, S. G.. (2007). . Anal. Chem., 79, 3554-. http://dx.doi.org/10.1021/ac061825f.

180

Piehowski, P. D.. (2008). . Anal. Chem., 80, 8662-. http://dx.doi.org/10.1021/ac801591r.

181

Zheng, L.. (2007). . J. Am. Chem. Soc., 129, 15730-. http://dx.doi.org/10.1021/ja0741675.

182

Liu, B. -F.. (2006). . J. Chromatogr. A, 1106, 19-. http://dx.doi.org/10.1016/j.chroma.2005.09.066.

183

Xu, B.. (2006). . Curr. Anal. Chem., 2, 67-. http://dx.doi.org/10.2174/157341106775197402.

184

McClain, M. A.. (2003). . Anal. Chem., 75, 5646-. http://dx.doi.org/10.1021/ac0346510.

185

Huang, B.. (2007). . Science, 315, 81-. http://dx.doi.org/10.1126/science.1133992.

186

Jones, J.. (2005). . Biochim. Biophys. Acta-General Subjects, 1726, 121-. http://dx.doi.org/10.1016/j.bbagen.2005.07.003.

187

Bynum, M. A.. (2009). . Anal. Chem., 81, 8818-. http://dx.doi.org/10.1021/ac901326u.

188

Chu, C. S.. (2009). . Proteomics, 9, 1939-. http://dx.doi.org/10.1002/pmic.200800249.

189

Dallas, D. C.. (2011). . J. Agric. Food Chem., 59, 4255-. http://dx.doi.org/10.1021/jf104681p.

190

Ninonuevo, M. R.. (2007). . J. Agric. Food Chem., 56, 618-.

191

Aisenbrey, C.. (2008). . Eur. Biophys. J., 37, 247-. http://dx.doi.org/10.1007/s00249-007-0237-0.

192

Kim, M.. (2008). . Biochem. Biophys. Res. Commun., 365, 628-. http://dx.doi.org/10.1016/j.bbrc.2007.11.020.

193

Madeira, A.. (2009). . Nat. Protoc., 4, 1023-. http://dx.doi.org/10.1038/nprot.2009.84.

194

Visser, N. F.. (2007). . ChemBioChem., 8, 298-. http://dx.doi.org/10.1002/cbic.200600449.

195

Aebersold, R.. (2003). . Nature, 422, 198-. http://dx.doi.org/10.1038/nature01511.

196

Feng, X.. (2008). . Mass Spectrom. Rev., 27, 635-. http://dx.doi.org/10.1002/mas.20182.

197

Gustafsson, M.. (2004). . Anal. Chem., 76, 345-. http://dx.doi.org/10.1021/ac030194b.

198

Wheeler, A. R.. (2005). . Anal. Chem., 77, 534-. http://dx.doi.org/10.1021/ac048754+.

199

Dodge, A.. (2006). . Analyst, 131, 1122-. http://dx.doi.org/10.1039/b606394b.

200

Blow, N.. (2007). . Natrue Methods, 4, 665-. http://dx.doi.org/10.1038/nmeth0807-665.

201

Sia, S. K.. (2003). . Electrophoresis, 24, 3563-. http://dx.doi.org/10.1002/elps.200305584.

202

Batz, N. G.. (2014). . Anal. Chem., 86, 3493-. http://dx.doi.org/10.1021/ac404106u.

Mass Spectrometry Letters