• P-ISSN2233-4203
  • E-ISSN2093-8950

Article Detail

Home > Article Detail
  • P-ISSN 2233-4203
  • E-ISSN 2093-8950

Optimum Radius Size between Cylindrical Ion Trap and Quadrupole Ion Trap

Mass Spectrometry Letters, (P)2233-4203; (E)2093-8950
2015, v.6 no.3, pp.59-64
https://doi.org/10.5478/MSL.2015.6.3.59
Chaharborj Sarkhosh Seddighi (Universiti Purta Malaysia)
Kiai Seyyed Mahmod Sadat (Universiti Purta Malaysia)
Arifin Norihan Md (Universiti Purta Malaysia)
Gheisari Yousof (Universiti Purta Malaysia)
  • Downloaded
  • Viewed

Abstract

Quadrupole ion trap mass analyzer with a simplified geometry, namely, the cylindrical ion trap (CIT), has been shown to be well-suited using in miniature mass spectrometry and even in mass spectrometer arrays. Computation of stability regions is of particular importance in designing and assembling an ion trap. However, solving CIT equations are rather more dif- ficult and complex than QIT equations, so, analytical and matrix methods have been widely used to calculate the stability regions. In this article we present the results of numerical simulations of the physical properties and the fractional mass resolu- tions of the confined ions in the first stability region was analyzed by the fifth order Runge-Kutta method (RKM5) at the optimum radius size for both ion traps. Because of similarity the both results, having determining the optimum radius, we can make much easier to design CIT. Also, the simulated results has been performed a high precision in the resolution of trapped ions at the optimum radius size.

keywords
Quadrupole ion trap cylindrical ion trap optimum radius size fifth order Runge Kutta method stability regions ion trajectory fractional mass resolution


Reference

1

Paul, W.. (1953). . Naturforsch, A8, 448-.

2

March, R. E.. (1995). Modern Mass Spectrometry Series, Vol. 1-3:CRC Press.

3

Paul, W.. (1990). . Rev. Mod. Phys, 62, 531-.

4

Major, F. G.. (2009). Chraged particle traps, Vol. 2:Springer.

5

Kashanian, F.. (2011). . Int. J. Mass Spectrom, 303, 199-.

6

Sadat Kiai, S. M.. (1991). . Int. J. Mass Spectrom. And ion processes, 107, 191-.

7

Sadat Kiai, S. M.. (1991). . Int. J. Mass Spectrom. And ion processes, 108, 65-.

8

Sadat Kiai, S. M.. (1999). . Int. J. Mass Spectrom, 188, 177-.

9

Sadat Kiai, S. M.. (2011). . Anal. At. Spectrom, 26, 2247-.

10

Seddighi Chaharborj, S.. (2010). . J. Mass Spectrom, 45, 1111-.

11

Seddighi Chaharborj, S.. (2012). . Int. J. Mass spectrom, 39, 63-.

12

Itano, W. M.. (1990). . J. phys. Rev. A, 41, 2295-.

13

Kielpinski, D.. (2001). . Science, 291, 1013-.

14

Beaty, E. C.. (1987). . J. Appl. Phys, 61, 2118-.

15

Blaum, K.. (2006). . physics Reports, 425, 1-.

16

Douglas, D. J.. (1923). . Mass Spectrometry Reviews, 21, 408-.

17

Kingdon, K. H.. (1923). . Physical Review, 21, 408-.

18

Hu, Q. Z.. (2005). . J. Mass spectrom, 40, 430-.

19

Baranov, V. I.. (2003). . J. Am. Soc. Mass Spectrom, 14, 818-.

20

Badman, E. R.. (2001). Miniature cylindrical ion traps and arrays.

21

Mather, R. E.. (1980). . Int. Mass Spectrom. Ion Phys, 33, 201-.

22

Wells, J. M.. (1998). . Anal. Chem, 70, 438-.

23

Kornienko, O.. (1999). . Rev. Sci. Instrum, 70, 3907-.

24

Benilan, M. N.. (1973). . Int. J. Mass Spectrom. Ion Phys, 11, 421-.

25

Bonner, R. F.. (1977). . Int. Mass Spectrom. Ion Phys, 24, 255-.

26

Lee, W. W.. (2003). . Int. Mass Spectrom, 230, 25-.

27

Ziaeian, I.. (2011). . Int. J. Mass Spectrom, 304, 25-.

28

Schowartz, J. C.. (2002). . JASMS, 13, 659-.

29

March, R. E.. (1997). . J. Mass Spectrom, 32, 351-.

30

Noshad, H.. (2011). . Int. J. Mass Spectrom, 308, 109-.

31

Sadat Kiai, S. M.. (2005). . J. Mass Spectrom, 247, 61-.

Submission Date
2015-08-08
Revised Date
2015-10-06
Accepted Date
2015-10-06
상단으로 이동

Mass Spectrometry Letters