Article Detail

Home > Article Detail
  • P-ISSN 2233-4203
  • E-ISSN 2093-8950

Hydrolysis of Penicillin G and Carbenicillin in Pure Water - As Studied by HPLC/ESI-MS

Mass Spectrometry Letters / Mass Spectrometry Letters, (P)2233-4203; (E)2093-8950
2019, v.10 no.4, pp.108-111
https://doi.org/10.5478/MSL.2019.10.4.108
Kołek Marta (Mickiewicz University)
Frański Rafał (Mickiewicz University)
Frańska Magdalena (Poznań University of Technology)
  • Downloaded
  • Viewed

Abstract

The hydrolysis of penicillin G, carbenicillin and ampicillin in pure water at room temperature was studied by high pressure liquid chromatography electrospray ionization mass spectrometry. Hydrolysis of ampicillin did not occur under these conditions; however, penicillin G and carbenicillin were completely hydrolyzed after seven days. A short interpretation of this difference is proposed. The mass spectrometric behaviour, namely ESI response and fragmentation pathway, of hydrolyzed pen- icillin G and hydrolyzed carbenicillin have been also discussed.

keywords
penicillin, carbenicillin, hydrolysis, mass spectrometry, electrospray, liquid chromatography


Reference

1

Timma, A. (2019). . Sci. Total Environ, 651, 1605-.

2

Serna-Galvis, E. A. (2019). . Ultrason. Sonochem, 50, 157-.

3

Serna-Galvis, E. A. (2017). . Environ. Sci. Pollut. Res, 24, 23771-.

4

László, N. (2018). . Food Chem, 267, 178-.

5

Gao, X. J. (2018). . Int. J. Environ. Sci. Technol, 15, 2203-.

6

Kaeseberg, T. (2018). . Environ. Pollut, 241, 339-.

7

Norzaee, S. (2018). . J. Environ. Manag, 215, 316-.

8

Chua, L. (2018). . Radiat. Phys. Chem, 145, 34-.

9

Bergheim, M. (2010). . Chemosphere, 81, 1477-.

10

Mullai, P. (2011). . Biores. Technol, 102, 5492-.

11

Pu Wang. (2015). Characterization and mechanism analysis of penicillin G biodegradation with Klebsiella pneumoniae Z1 isolated from waste penicillin bacterial residue. Journal of Industrial and Engineering Chemistry, 27, 50-58. http://dx.doi.org/10.1016/j.jiec.2014.12.018.

12

Zhou, X. (2018). . Chem. Engineer. J, 341, 93-.

13

Aldeek, F. (2016). . J. Agric. Food Chem, 64, 6100-.

14

Kheirolomoom, A. (1999). . Proc. Biochem, 35, 205-.

15

Längin, A. (2009). . Chemosphere, 75, 347-.

16

Ghauch, A. (2009). . Environ. Pollut, 157, 1626-.

17

López, R. (2006). . Curr. Org. Chem, 10, 805-.

18

Kümmerer, K. (2011). . Chemosphere, 84, 189-.

19

Wyrwas, B. (2011). . Chemosphere, 84, 187-.

20

Frańska, M. (2010). . Environ. Pollut, 158, 3028-.

21

Grover, M. (2000). . Pharm. Pharmacol. Commun, 6, 355-.

22

Podniesińska, L. (2019). . Eur. J. Mass Spectrom, 25, 357-.

23

Li, D. (2008). . Water Res, 42, 307-.

24

Ho, H.-P. (2011). . Rapid Commun. Mass Spectrom, 25, 25-.

25

Li, L. (2014). . J. Dairy Sci, 97, 4052-.

26

Gower, J. L. (1984). . J. Antibiot, 37, 33-.

Submission Date
2019-09-24
Revised Date
2019-11-21
Accepted Date
2019-12-01
상단으로 이동

Mass Spectrometry Letters